In the density measurement of a cube, the mass and edge length are measured as $(10.00 \pm 0.10)\,\,kg\,$ and $(0.10 \pm 0.01)\,\,m\,$ respectively. The error in the measurement of density is

  • [JEE MAIN 2019]
  • A

    $0.10\,\,kg/m^3$

  • B

    $0.31\,\,kg/m^3$

  • C

    $0.07\,\,kg/m^3$

  • D

    None of these

Similar Questions

The length and breadth of a rectangle are $(5.7 \pm 0.1) cm$ and $(3.4 \pm 0.2) cm$, respectively. Calculate the area of rectangle with error limits.

Following observations were taken with a vernier callipers while measuring the length of a cylinder

$3.29 \,cm, 3.28\, cm, 3.29 \,cm, 3.31 \,cm,$ $ 3.28\, cm, 3.27 \,cm, 3.29 \,cm, 3.30\, cm$

Then find Absolute error in forth and eighth observation

Two clocks are being tested against a standard clock located in a national laboratory. At $12: 00: 00$ noon by the standard clock, the readings of the two clocks are 

$\begin{array}{ccc} & \text {Clock} 1 & \text {Clock} 2 \\ \text { Monday } & 12: 00: 05 & 10: 15: 06 \\ \text { Tuesday } & 12: 01: 15 & 10: 14: 59 \\ \text { Wednesday } & 11: 59: 08 & 10: 15: 18 \\ \text { Thursday } & 12: 01: 50 & 10: 15: 07 \\ \text { Friday } & 11: 59: 15 & 10: 14: 53 \\ \text { Saturday } & 12: 01: 30 & 10: 15: 24 \\ \text { Sunday } & 12: 01: 19 & 10: 15: 11\end{array}$

If you are doing an experiment that requires precision time interval measurements, which of the two clocks will you prefer?

The period of oscillation of a simple pendulum is given by $T = 2\pi \sqrt {\frac{l}{g}} $ where $l$ is about $100 \,cm$ and is known to have $1\,mm$ accuracy. The period is about $2\,s$. The time of $100$ oscillations is measured by a stop watch of least count $0.1\, s$. The percentage error in $g$ is ......... $\%$

A physical quantity is $A = P^2/Q^3.$ The percentage error in measurement of $P$ and $Q$ is $x$ and $y$ respectively. Maximum error in measurement of $A$ is